EEG Microsleep Characterization based on Self-Organizing Feature Maps

Introduction

Analysis of EEG - Segments accompanied by Slow Eye Movement (SEM) for Microsleep Research based on the Extraction of 47-dimensional Feature Vectors using Discrete Fourier Transform.

Aim 1: Comprehensive Characterization of Microsleep Events based on 2 Seconds EEG-Segments.
Aim 2: Performance of Self-Organizing Feature Maps (SOM) for Clustering of Data with high Noise.
Aim 3: Estimation of the Number of Clusters and the Cluster-Prototypes with an automatic Method.

Simple Evaluation

Winner Frequency for a Self-Organizing Feature Map with 30x40 Neurons

- Artificial Gauss-Mixture Data
 - 1652 Feature Vectors
 - 5 Clusters
 - 47 dim. Feature Vectors
- Recorded SEM-EEG Data
 - 1652 Feature Vectors
 - unknown Number of Clusters
 - 47 dim. Feature Vectors

Enhanced Evaluation

Unified Distance Matrix (U-Matrix) [Ultsch et al., 89]

Method for the Visualization of Distances between topological adjacent Prototype Vectors

\[
dy(x,y) = |w_{xy} - w_{xy,y}| \quad dx(x,y) = |w_{xy} - w_{xy,x}|
\]

\[
dx(x,y) = \frac{1}{2} \left[|w_{xy,y} - w_{xy,y}| - |w_{xy,x} - w_{xy,x}| \right]
\]

\[
U = \begin{bmatrix}
 u(1,1) & u(1,2) & \cdots & u(1,5) \\
 u(2,1) & u(2,2) & \cdots & u(2,5) \\
 \vdots & \vdots & \ddots & \vdots \\
 u(5,1) & u(5,2) & \cdots & u(5,5)
\end{bmatrix}
\]

- Method for Image Segmentation
 - Steps:
 1) Smooth the Function \(U(x,y)\)
 2) Set initial Ground Level \(h_{\text{min}}\)
 3) Mark all Minima Regions
 4) Flood the Minima Regions
 5) Install water-dividing Barriers

Segmentation

Segmentation with the Watershed Algorithm [Beucher et al., 79]

Method for Image Segmentation

1. Smoothe the Function \(U(x,y)\)
2. Set initial Ground Level \(h_{\text{min}}\)
3. Mark all Minima Regions
4. Flood the Minima Regions
5. Install water- Barriers

Results

The "Segmented U-Matrix Method" is applied to the SEM-EEG Data Set in order to evaluate the Number of Clusters as a Function of the Ground Level \(h_{\text{min}}\). Alpha-Burst Microsleeps are only one type among the Diversity of EEG-Microsleep Events. Therefore, the depicted Result represents an Extension of the current scientific Knowledge

- a: without Generation of new Minima Regions
- b: with Generation of new Minima Regions

David Sommer*, Chris Ramsthaler*, Martin Golz*, Udo Trutshel*, Martin Moore-Ede*

*University of Applied Sciences Schmalkalden, Department of Computer Science, PF 182, D-98574 Schmalkalden, Germany
*Circadian Technologies Inc., 125 Cambridge Park Drive, Cambridge, MA 02140, USA